12.1) Two-Dimensional and Three-Dimensional Geometry

The Distance Formula:

e In the x,y plane, the distance between the points (x;,y1) and (x2,y2) is
d= ‘/(.XQ —X1)2 + (yz —y1)2 .

e In x,y,z space, the distance between the points (xi,y1,z1) and (x2,y2,22) is
d=JG2—-x1)2+(02-y1)?+ (22 —21)7.

The Midpoint Formula:

e In the x,y plane, the midpoint of the line segment with endpoints (x;,y:) and (x2,y2) is
X|+Xx +
( 12 z,y12y2 )
e Inx,y,z space, the midpoint of the line segment with endpoints (x;,y1,z1) and

(x2,12,22) is (= ;xz , & ;yz , = ;Zz ).

In two-dimensional space, a circle is the set of points that are a fixed distance from a given
point. This given point is called the center of the circle, and the fixed distance is called the
radius.

In the x,y plane, if the center of a circle is the point (4,k) and the radius is r, then the
equation of the circle is (x — h)? + (y — k)? = r%. If the circle is centered at the origin, then its
equation simplifies to x? +y? = r2.

The extreme points of a circle are the circle’s highest, lowest, rightmost, and leftmost points.
For the circle (x — h)? + (y — k)? = ?, these points are (h,k+r), (h,k—r), (h+r,k), and
(h—r,k). For the circle x?> + y? = 2, these points are (0,7), (0,-r), (r,0), and (-r,0), which
are also the circle’s y and x intercepts.

In the x,z plane, the equation (x — #)? + (z — k)?> = ? represents a circle with radius
centered at (h,k). In the y,z plane, the equation (y — 4)? + (z — k)?> = r? represents a circle
with radius r centered at (4,k).

A sphere is the three-dimensional version of a circle. In three-dimensional space, a sphere
is the set of points that are a fixed distance from a given point. This given point is called the
center of the sphere, and the fixed distance is called the radius. If the center is the point
(h,k,I) and the radius is r, then the equation of the sphere is

(x—-h)?+@W-k)?>+(-10?=r> If the sphere is centered at the origin, then its equation
simplifies to x2 + y? + z2 = 2.

The extreme points of the sphere (x — h)?> + (y —k)?> + (z—1)? = r? are (h,k,1+7), (hk,1-7),
(hk+r0), (hk—r]), (h+rk]), and (h—r,k,[). Forthe sphere x> +y? +z> = r?, these
points are (0,0,r), (0,0,-r), (0,7,0), (0,-r,0), (r,0,0), and (-r,0,0), which are also the
sphere’s z, y, and x intercepts.



A circle is an example of a curve, and a sphere is an example of a surface. Later on, we
will examine curves in three-dimensional space, but for now we will only consider curves in
two-dimensional space (with one exception—we will address vertical lines in
three-dimensional space). Surfaces, of course, arise only in three-dimensional space.

A line is a special case of a curve—it may be thought of as a curve that is straight. A curve
that is not a line is a non-linear curve. A plane is a special case of a surface—it may be
thought of as a surface that is flat. A surface that is not a plane is a non-planar surface.

e In the x,y plane, a vertical line is any line perpendicular to the x axis (it may be the y
axis or any line parallel to the y axis).

e Inthe x,z plane, a vertical line is any line perpendicular to the x axis (it may be the =z
axis or any line parallel to the z axis).

e Inthe y,z plane, a vertical line is any line perpendicular to the y axis (it may be the =z
axis or any line parallel to the z axis).

e Inx,y,z space, a vertical line is any line perpendicular to the x,y plane (it may be the
z axis or any line parallel to the z axis).

In two-dimensional space, a curve is represented by an equation involving two variables. In
three-dimensional space, a surface is represented by an equation involving three variables.
In both situations, we say the equation defines a relation between or among the variables.
The curve or surface is the set of all points in the given space satisfying the equation, and is
referred to as the graph of the relation.
e In the x,y plane, a curve is represented by an equation in x and y, which defines a
relation between x and y.
e In the x,z plane, a curve is represented by an equation in x and z, which defines a
relation between x and z.
e Inthe y,z plane, a curve is represented by an equation in y and z, which defines a
relation between y and z.
e Inx,y,z space, a surface is represented by an equation in x, y, and z, which defines
a relation among x, y, and z.

A curve or a surface may or may not represent a function.

e In the x,y plane, a curve may or may not represent y as a function of x.

e In the x,z plane, a curve may or may not represent z as a function of x.

e In the y,z plane, a curve may or may not represent z as a function of y.

e Inx,y,z space, a surface may or may not represent z as a function of x and y.

It is possible to interchange the roles of the variables—for example, to consider whether a
curve represents x as a function of y, or to consider whether a surface represents y as a
function of x and z. However, unless otherwise specified, the above frameworks are the
ones we will focus on.

In the x,y plane, a curve represents a function if no two points on the curve share a
common x coordinate. We may express this idea through the vertical line test: If every
vertical line intersects the curve at no more than one point, then the curve represents a
function, but if any vertical line intersects the curve at multiple points, then the curve does



not represent a function.

The vertical line test can also be applied in the x,z plane or in the y,z plane to determine
whether z is a function of x or y, respectively.

In x,y,z space, a surface represents a function if no two points on the surface share
common x and y coordinates. We may express this idea through the vertical line test: If
every vertical line intersects the surface at no more than one point, then the surface
represents a function, but if any vertical line intersects the surface at multiple points, then
the surface does not represent a function.

The circle x? + y* = 72 fails the vertical line test; for instance, the vertical line x = 0 intersects
the curve at the points (0,7) and (0,—r). If we solve for y in terms of x, we get

y = +Jr> —x?. Because of the “plus-or-minus” sign, this equation will generate two values
of y from one value of x, for instance, y = +r from x = 0. Hence, y is not a function of x.

The sphere x? + y? + z2 = r? fails the vertical line test; for instance, the z axis intersects the
surface at the points (0,0,7) and (0,0,—r). If we solve for z in terms of x and y, we get

z =1 /r’ —x?—y?. Because of the “plus-or-minus” sign, this equation will generate two
values of z from one pair of values for x and y, for instance, z = £ from (x,y) = (0,0).
Hence, z is not a function of x and y.

Whereas the complete circle x> + y* = 2 is not a function, if we restrict ourselves to the top
half of the circle—i.e., to the part of the circle lying on or above the x axis—we have a
semicircle, which is a function. The equation of the semicircle is y = /> —x?. If we call
this function £, then we may write the formula f{x) = /> —x?>. The domain of this function is
the interval [-r, 7] on the x axis. (If x were outside this interval, the radicand would be
negative and the formula would generate an imaginary result.) The range of this function is
the interval [0, 7] on the y axis. This kind of function is known as a semicircular function.

Whereas the complete sphere x> + y? + z2 = r? is not a function, if we restrict ourselves to
the top half of the sphere—i.e., to the part of the sphere lying on or above the x,y plane—we
have a hemisphere, which js a function. The equation of the hemisphere is

z = Jr* —x?—y?*. If we call this function f, then we may write the formula

flx,y) = Jr* —x* —y?. The domain of this function is the circular disk x> + y> < 2 in the x,y
plane. (A circular disk is a circle together with its interior.) (If the point (x,y) were outside
this disk, the radicand would be negative and the formula would generate an imaginary
result.) The range of this function is the interval [0,7] on the z axis. This kind of function is
known as a hemispherical function.

Starting with a curve in one of the three coordinate planes (i.e., the x,y plane or the x,z
plane or the y,z plane), we convert it into a surface in three-dimensional space, through a
process known as orthogonal projection. If the original curve is a line, then its orthogonal
projection is a plane. If the original curve is not a line, then we refer to its orthogonal
projection as a cylinder.



e The orthogonal projection of a curve in the x,y plane (i.e., in the plane z = 0) is said
to be “parallel to the z axis.”

e The orthogonal projection of a curve in the x,z plane (i.e., in the plane y = 0) is said
to be “parallel to the y axis.”

e The orthogonal projection of a curve in the y,z plane (i.e., in the plane x = 0) is said
to be “parallel to the x axis.”

The most famous kind of cylinder is a circular cylinder. This is the cylinder obtained by
orthogonally projecting a circle. For instance, if we start with the circle x> + y? = r? in the x,y
plane and project it orthogonally into three-dimensional space, we obtain a “vertical” circular
cylinder whose center is the z axis. It extends infinitely high and infinitely low. On the other
hand, if we start with the circle x> + z2 = #? in the x,z plane and project it orthogonally into
three-dimensional space, we obtain a “horizontal” circular cylinder whose center is the y
axis. It extends infinitely far to the “left” and to the “right.” (I put these directions in
quotation marks because left and right are subjective, depending on where you are
standing.)

(In a basic geometry class, a “cylinder” is necessarily circular, has finite extent, and is
capped off by circular disks at each end, thus forming a closed solid.)

A parabolic cylinder is the cylinder obtained by orthogonally projecting a parabola. For
instance, if we start with the parabola y = x? in the x,y plane and project it orthogonally into
three-dimensional space, we obtain a “vertical” parabolic cylinder, which runs along the z
axis (i.e., every point on the z axis is part of the cylinder). On the other hand, if we start with
the parabola z = x? in the x,z plane and project it orthogonally into three-dimensional space,
we obtain a “horizontal” parabolic cylinder, which runs along the y axis (i.e., every point on
the y axis is part of the cylinder).

A vertical cylinder is not the graph of a function (i.e., z is not a function of x and y) because it
will obviously fail the vertical line test. On the other hand, a horizontal cylinder may be a
function. The horizontal circular cylinder x? + z2 = 2 fails the vertical line test and so is not
a function; however, if we take only the top half (i.e., the part lying on or above the x,y
plane), it passes the vertical line test, and we have the function f{(x,y) = Jr> — x*, where the
domainis {(x,y) | x € [-r,r], y € (—0,0)} and the range is z € [0,7]. The horizontal
parabolic cylinder z = x? passes the vertical line test, so we have the function f(x,y) = x2,
where the domain is the entire x,y plane and the range is z € [0, ).

So far, we have discussed orthogonally projecting points of a plane into three dimensional
space. Conversely, we can orthogonally project a set of points in three-dimensional space
(e.g., a surface) onto a plane (typically the x,y plane, i.e., the plane z = 0). To project a set
of points onto the plane z = 0, we simply replace each point’s z coordinate with 0. For
example, the point (-3,7,19) would project to the point (-3,7,0).

This process is analogous to a process with which you are already familiar—namely,
orthogonally projecting a set of points in two-dimensional space (e.g., a curve) onto a line
(either the x axis, which is the line y = 0, or the y axis, which is the line x = 0). You use this
process to determine the domain and range of a relation from its graph. For example,
consider the circle (x — 5)2 + (y — 4)? = 9, which has center (5,4) and radius 3. Its extreme



points are (5,7), (5,1), (8,4), and (2,4). If we project the circle onto the x axis, we obtain
the interval [2, 8], which is the domain of the relation. If we project the circle onto the y axis,
we obtain the interval [1,7], which is the range of the relation.

If we project the sphere x? + y? + z2 = 16 onto the x,y plane (i.e., the plane z = 0), we obtain
the circular disk x? + 2 < 16, which is the domain of the relation. (This is the disk with
center (0,0) and radius 4.)

If we project the sphere (x —4)? + (y — 5)? + (z— 3)? = 100 onto the x,y plane (i.e., the plane
z = 0), we obtain the circular disk (x — 4)% + (y — 5)? < 100, which is the domain of the
relation. (This is the disk with center (4,5) and radius 10.)



